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Received 21 February 1980 

Abstract. The results of a variational renormalisation-group calculation for the magnetic 
exponent y~ of the two-dimensional q-state Potts model suggest a simple relationship 
between y H  and the exactly known critical exponent y ~ * '  of the eight-vertex model. The 
relation allows one to predict the critical and tricritical magnetic exponent 6 of the q-state 
Potts model as a function of q. 

We propose that the magnetic exponent yH of the twa-dimensional q-state Potts model 
is related to the thermal exponent yTaV of the eight-vertex model along the Baxter line 
according to 

( 4 y ~  + y ~ ' " - 6 ) ( y ~ ' ~ - 2 ) = - 3 ,  (1) 
when 4 C 4c = 4. Here yTaV = (2/7r) cos-'(J4/2), with 0 s yTaV s 1 for the critical and 
-1 S y ~ ' " 6  0 for the tricritical phase transition of the Potts model, respectively. When 
4 > 4c, the transition of the Potts model is of first order and yH = 2. The exponent S is 
obtained from 

8 =YH/(2-YH)* (2) 
For 4 equal to 4 ,3 ,2 ,  and 1, the relation predicts for S the critical values 15,14,15,18$, 
and the tricritical values 15,20,25$, 373. The conjecture (1) is not based on new insight 
into the Potts model but rather on observations arising from numerical work, which 
employs the variational renormalisation-group approach to the Potts model (Nienhuis 
el al 1980), and from exactly known data for the critical S at 4 equal to 2,3,  and 4. The 
magnetic correction exponent yH,2 is also discussed. For 4 = 4=, the renormalisation- 
group calculation yields yH.2=: in agreement with a conjecture by Barber (1976). 

It had been suggested that the magnetic exponent S (or yH) of the Potts model is 
independent of 4 (Berker et a1 1978, den Nijs 1979, unpublished PhD Thesis). This 
suggestion is analogous to the conjecture by Barber and Baxter (1973) that the 
magnetic exponent of the eight-vertex model remains constant along the Baxter line. 
For 4 = 2 and 4, the value S = 15 is known exactly (for example, Barber and Baxter 
1973). However, evidence that S is not independent of 4 is provided by the recent exact 
solution of the hard-hexagon model by Baxter (1980). For this model, believed to be in 
the universality class of the 4 = 3 Potts model (Alexander 1975), Baxter obtained 
S = 14. Earlier evidence is the result of S = 18 for the 4 = 1 Potts model (Dasgupta 
1976, Gaunt and Sykes 1976). Our calculation confirms the variation of the magnetic 
exponent with 4 and provides a simple formula describing the variation. 

0305-4470/80/060189 +04$01.50 @ 1980 The Institute of Physics L189 



L190 Letter to the Editor 

Nienhuis et a1 (1979, 1980) proposed a novel renormalisation-group trans- 
formation for the Potts model that revealed the topology of the renormalisation-group 
flow diagram. For q < qC, lines of critical and tricritical fixed points exist, that merge at 
qc. Along the fixed lines the Potts exponents vary continuously as functions of q. A 
calculation using the variational renormalisation-group method of Kadanoff (1975) 
confirmed this picture for the thermal exponent YT and yielded very satisfactory 
agreement with exact results for the critical exponents and the critical value qc=4 
(Nienhuis er a1 1980). The same approximation method with the same weight function 
is employed here to determine the magnetic exponents of the Potts model. The model is 
studied embedded in the larger space of Potts-lattice-gas Hamiltonians 

with the symmetry breaking term 

The lattice gas variable ti equals unity if a Potts spin si = 1,2,  . . . , q occupies lattice site i 
and is zero otherwise. The chemical potential A governs the concentration of vacancies. 

The results of the calculation are shown in three figures, each exhibiting three sets of 
data. The renormalisation-group equations have two fixed-line solutions. One exhibits 
the full topology of critical and tricritical branches (broken curve) and has a free energy 
that assumes a maximum as a function of the variational parameters. At q = 2, the 
result reduces to that of Burkhardt (1976). For reasons not fully understood no results 
were found for small q on the critical branch. The second solution yields critical 
exponents (dotted curve) in good agreement with exact results at small q but fails to 
yield the first-order transition at large q. This fixed line lies in the pure Potts model 
subspace but has a free energy that assumes a saddle point. The solution is identical 
with Dasgupta's (1976, 1977), who did not consider the possibility of vacancies. 

Figure 1 exhibits a plot of the magnetic exponent Y H  versus the thermal exponent YT 
of the Potts model along the critical (yTC 1.5) and tricritical (yT> 1.5) fixed lines. These 
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Figure 1. Magnetic exponent yH versus thermal exponent YT for the q-state Potts model 
from variational renormalisation-group calculation (broken and dotted curves) and con- 
jecture equation (5). 
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numerical results (broken and dotted curves) suggested to us that yH and yT satisfy the 
simple relation (full curve) 

Combining this result with the den Nijs conjecture (YT- 3 ) ( y ~ ~ ' -  2) = 3 (den Nijs 1979, 
Nienhuis et a1 1979), one obtains the result of equation (1). This new conjecture 
reproduces correctly all exactly known critical values of S. Furthermore, it assumes a 
particularly simple form when used to compute the exponent p = (2 - YH)/YT for the 
Potts model. 

as communicated to us by Pearson (1980, private communication). The variation of yH 
with 4 is shown in figure 2. The full, broken and dotted curves have the same meaning 
as in figure 1. 

The variation of the second magnetic exponent YH,Z with 9 is shown in figure 3. At 
4c, it assumes to within 0.2% the value conjectured by Barber (1976) for the 
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Figure 2. Critical and tricritical magnetic exponents yH (lower and upper branch, respec- 
tively) of the Potts model from variational renormalisation-group calculation (broken and 
dotted curves) and conjecture equation (1). 
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Figure 3. Second magnetic exponent yH.2 for the critical and tricritical Potts transition 
(lower and upper branch, respectively) from variational renormalisation-group calculation 
(broken and dotted curves) and equation (7). 
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corresponding exponent of the Baxter-Wu model. The relation 

fits the numerical data rather well and yields yH,2(4 = 0) = 0 (Lubensky 1978). No other 
exact resultsfor yH.2 at 4 < 4c are known. Relations of the form y i  = yi(yT8') should exist 
for any exponent of the Potts model as they depend only on 4. 

In summary, our variational renormalisation-group approach provides accurate 
numerical results for the critical and tricritical exponents of the Potts model. It provides 
the basis for our conjecture on the variation of yH with 4 and leads us to believe that the 
thermal and magnetic exponents of the Potts model are now known exactly. 

This research was supported in part by the US National Science Foundation under 
Grants No. DMR 77-12676 A02 and No. DMR 77-21842. 
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